skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Manoj, Niket"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Asymmetric diboration of terminal alkenes is well established, and subsequent selective functionalization of the less hindered primary boronic ester is commonly achieved. Conversely, selective functionalization of the sterically less accessible secondary boronic ester remains challenging. An alternative way to control chemoselective functionalization of bis(boron) compounds is by engendering different Lewis acidity to the two boryl moieties, since reactivity would then be dictated by Lewis acidity instead of sterics. We report herein the regio‐ and enantioselective Pt‐catalyzed diboration of unactivated alkenes with (pin)B−B(dan). A broad range of terminal and cyclic alkenes undergo diboration to furnish the differentiable 1,2‐bis(boron) compounds with high levels of regio‐ and enantiocontrol, giving access to a wide variety of novel building blocks from a common intermediate. The reaction places the less Lewis acidic B(dan) group at the less hindered position and the resulting 1,2‐bisboryl alkanes undergo selective transformations of the B(pin) group located at the more hindered position. The regioselectivity of the diboration has been studied by DFT calculations and is believed to originate from thetransinfluence, which lowers the activation barrier for formation of the regioisomer that places the weaker electron donor [B(pin) vs B(dan)] opposite the strong electron donor (alkyl group) in the platinum complex. 
    more » « less